

Empirical Atomic Level Simulations for QC Applications

Paul von Allmen

Jet Propulsion Laboratory
California Institute of Technology

Contributors:

Seungwon Lee, Fabiano Oyafuso, Gerhard Klimeck

Jet Propulsion Laboratory

Tim Boykin

Univ. of Alabama, Huntsville

Collaborators:

Bob Joynt, Mark Friesen
Univ. of Wisconsin, Madison

Charter

- 1) Build simulation tools that help in designing QC in solid state implementation
- 2) Assist experimental efforts in characterizing and designing QC structures

Tools

- 1) Empirical tight binding electronic structure calculation software that can simulate systems with millions of atoms, strain, Coulomb interaction, magnetic field, optical properties
- 2) Quantum transport simulator using non-equilibrium Green function formalism; phonon scattering, interface roughness, alloy disorder, atomic level resolution, spin effects (under construction) and magnetic field (under construction)

NEMO-1D and extension

Outline

- 1. Atomic level simulation of SiGe
- 2. Quantum confinement induced intervalley coupling in Si
- 3. Electrostatically defined quantum dot 3D atomic level
- 4. Spin transport with non-equilibrium Green function
- 5. Atomic level simulation of quantum dot in magnetic field

Quantum confinement induced intervalley coupling in Si

Valley degeneracy in X direction is broken by interface and electric field

Are the qubit states separated enough from higher energy states?

Collaboration with University of Wisconsin

Quantum confinement induced intervalley coupling in Si

- 1D Tight Binding (NEMO 1-D)
- Si quantum well
- Strained on Si_{0.8}Ge_{0.2}
- Hard walls

Splitting is large enough (0.5-1.5 meV) for quantum computing

Collaboration with University of Wisconsin

Electrostatic confinement in Si QW

Geometry

- 5nm Si quantum well lattice-matched to Si_{0.8}Ge_{0.2} (0.8% tensile strain)
- Non-zero field along z and lateral electrostatic confinement.
- Rescaled problem size (5x10⁴ atoms) from WI group

Collaboration with University of Wisconsin

Electronic structure of low-lying states

Splitting of electronic levels

- Valley splitting due to loss of translational symmetry in QD (~0.45 meV)
- Zeeman splitting is smaller (~0.12 meV).

Collaboration with University of Wisconsin

QD symmetry breaking

B = 1 T

1.13498 eV

1.13504 eV

1.13492 eV

1.13453 eV

1.13459 eV

1.13447 eV

Spin Transport with Non-Equilibrium Green Functions

Time evolution

- 1. Spin transport
- 2. Spin precession
- 3. Spin relaxation and decoherence

Applications

- 1. Magneto-optic (TRKR) experiments
- 2. Transport between qubits
- 3. Preparation of initial state for QC

Spin Transport with Non-Equilibrium Green Functions

Equations of motion

Open boundaries (finite difference or tight binding)

$$\left(i\partial_{t} \square H_{nm}^{(0)}\right) G_{mn\square}^{<} = \square_{n1} \square_{11}^{Br} G_{1n\square}^{<} + \square_{n1} \square_{11}^{Bc} G_{1n\square}^{a} + \square_{nN} \square_{NN}^{Br} G_{Nn\square}^{<} + \square_{nN} \square_{NN}^{Bc} G_{Nn\square}^{a}$$

$$\left(i\partial_{t} \square H_{nm}^{(0)}\right) G_{mn\square}^{r} = \square_{nn\square} + \square_{n1} \square_{11}^{Br} G_{1n\square}^{r} + \square_{nN} \square_{NN}^{Br} G_{Nn\square}^{r}$$

$$\square_{11} = H_{10}^{(0)} G_{00}^{0} H_{01}^{(0)}$$

$$\square_{NN} = H_{NN+1}^{(0)} G_{N+1N+1}^{0} H_{N+1N}^{(0)}$$

Surface Green Functions

- 1. Stationary in time (NEMO-1D)
 - Fourier transform of Green function
 - Algebraic Dyson equation
 - Recursive method to calculate the surface Green function
- 2. Time dependent case

$$G_{00}^{<0}(t,t) = g_{00}^{<0}(t t t) M^{<}(t,t)$$

 $g_{00}^{<0}(t \square t)$ is the surface Green function for a spinless system

$$M^{<}(t,t) = \begin{bmatrix} \cos \frac{D_L t}{2} \cos \frac{D_L t}{2} & \sin \frac{D_L t}{2} \\ \sin \frac{D_L t}{2} \cos \frac{D_L t}{2} & \sin \frac{D_L t}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \sin \frac{D_L t}{2} \cos \frac{D_L t}{2} & \sin \frac{D_L t}{2} \end{bmatrix}$$
Polarized spin up
$$D_L = DB$$

JPL

Tight-binding model for magneto-optical response

• Gauge-invariant modification of tight-binding Hamiltonian [M. Graf and P. Vogl, Phys. Rev. B **51**, 4940 (1995)]

$$\prod_{i} = \prod_{i}^{0} + \prod_{B} B \cdot \prod_{i}$$

On-site interaction

$$t_{ij} = t_{ij}^{0} \exp(\Box \frac{ie}{hc} \prod_{R_{i}}^{R_{i}} A \cdot dr)$$

Nearest-neighbor interaction

Absorption rate between conduction and valence levels
 [S. Lee et al., Phys. Rev. B 66, 235307 (2002)]

$$\Box(E) = \frac{2\Box}{\hbar} |\langle c | \hat{r} | v \rangle|^2 \Box (E_c \Box E_v \Box E)$$

$$\langle c|\hat{r}|v\rangle = \prod_{ij} c_j^* v_i [\hat{r}_i \square_{ij} + \langle j|\square\hat{r}_i|i\rangle]$$

InAs self-assembled lens-shaped dot

Modeled system geometry

• Strain profile model: atomic elasticity model
[P. N. Keating, Phys. Rev. B 145, 637 (1966)]
Strain energy as a function of bond length and bond angle.

Tight-binding Hamiltonian

Basis orbitals: sp3d5 s*

Parameters generated by a genetic algorithm.

Size : 921600 = 46080 atoms X 10 basis orbitals X 2 spins

• Eigenvalue solver: Arnoldi method with PARPACK package Computation on a Beowulf cluster with 30 nodes.

Magnetic-Field Effect on Electronic Structure of InAs Dot

Conduction Electron Levels

- Zeeman Interaction splits the levels into spin-up and -down levels.
- Effective g-factor ($g = (E_{\uparrow} \square E_{\Box})/\square_B B$) ranges from 2 to 3.5.

Valence Electron Levels

- Zeeman interaction splits the levels into
 Jz = 3/2 and Jz = 3/2 levels.
- Zeeman interaction couples closelyspaced levels.

Magneto-Optical Response of InAs Quantum Dot

- Selective dipole coupling between electron and hole levels.
- The selectivity remains intact even at a high magnetic field.

$$\Box L = 0 \& \Box j = 1$$

